广告招募

当前位置:中非贸易网 > 技术中心 > 所有分类

图像质量评价基本知识(三)(客观评价方法)

2026年01月10日 08:56:08      来源:北京博米科技有限公司 >> 进入该公司展台      阅读量:3

分享:

图像质量评价基本知识(三)(客观评价方法)

图像质量的客观评价方法是根据人眼的主观视觉系统建立数学模型,并通过具体的公式计算图像的质量。传统的图像质量客观评价方法主要包括均方误差(MSE,mean squared error)和峰值信噪比(PSNR,peak signal to noise rate)。均方误差法首先计算原始图像和失真图像像素差值的均方值,然后通过均方值的大小来确定失真图像的失真程度。计算公式如下:

其中 M、N为图像的长和宽,fij表示原始图像的像素值,fij'表示降质后图像的像素值。PSNR作为衡量图像质量的重要指标,基于通信理论而提出,是信号量与噪声强度的比值。由于数字图像都是以离散的数字表示图像的像素,因此采用图像的像素值来代替信号量。具体公式如下:

其中 L 为图像中像素的灰度值,一般采用 255。  

上述方法的优点是直观、严格,计算简单,而且可以直接应用于依据“MSE 最小”原则设计的图像系统。因此,这类方法成为应用泛的图像质量评价手段。但它的缺点也是显而易见的。有文献具体分析了 MSE 性能不稳定的原因,并指出这一缺点是方法本身的缺陷,无法克服。PSNR 只在评价白噪声失真图像时效果良好,而在其它领域也会出现如 MSE 一样的不稳定现象,也有文献对此进行了深入分析。  

对图像质量进行客观评价时,根据对原始无失真图像依赖程度的不同,可将图像质量的客观评价算法分成三类:全参考(Full Reference, FR)图像质量评价、半参考(Reduced Reference, RR)图像质量评价和无参考(No Reference, NR)图像质量评价。全参考图像质量评价主要是将失真图像和参考图像逐像素进行比较,得出对失真图像的评价;半参考的图像质量评价是从原始图像和失真图像中分别提取图像的有效特征,如图像的梯度和直方图,通过对有效特征进行比较,得出对失真图像的评价;无参考的图像质量评价则无需任何参考图像的信息,直接提取失真图像的某些失真因素特征,如图像的边界强度、噪声率、模糊度等,图像质量评价最终取决于观察者的感觉,所以不论采用上述哪种客观评价方法,目标都是追求客观评价结果与人的主观评价尽可能的一致,即客观评价要以主观评价为准则。  

客观评价方法的优点是速度快、费用低、应用领域广,评价结果具有重现性,不受主观因素的影响。缺点是目前只能在某些方面有限度的模仿人眼的主观视觉系统,常会出现与主观评价结果不一致的情况,不同的模型依据具体的应用领域进行不同的条件假设,难以建立适用于任何领域的数学模型。

 

 

版权与免责声明:
1.凡本网注明"来源:中非贸易网"的所有作品,版权均属于中非贸易网,转载请必须注明中非贸易网。违反者本网将追究相关法律责任。
2.企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
3.本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。 4.如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系。